Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.263
Filtrar
1.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622195

RESUMEN

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Asunto(s)
Carbón Orgánico , Gases de Efecto Invernadero , Oryza , Suelo/química , Calentamiento Global , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Oryza/química , Metano/análisis , Carbono , Óxido Nitroso/análisis
2.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569960

RESUMEN

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Gases de Efecto Invernadero/análisis , Oryza/metabolismo , Agricultura/métodos , Calentamiento Global , Producción de Cultivos , Óxido Nitroso/análisis , Metano/análisis , Suelo , China
3.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569319

RESUMEN

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Asunto(s)
Fabaceae , Gases de Efecto Invernadero , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Suelo , Metano/análisis , Nitrógeno/metabolismo , Dióxido de Carbono/análisis , Agricultura
4.
J Environ Manage ; 357: 120736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574706

RESUMEN

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Dióxido de Carbono/análisis , Biocombustibles/análisis , Saneamiento , Suelo/química , Metano/análisis , Óxido Nitroso/metabolismo , Efecto Invernadero
5.
J Environ Manage ; 357: 120828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579473

RESUMEN

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Asunto(s)
Reactores Biológicos , Agua , Humanos , Animales , Porcinos , Anaerobiosis , Agua/análisis , Heces , Digestión , Metano/análisis
6.
Environ Sci Technol ; 58(15): 6575-6585, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564483

RESUMEN

Wide-area aerial methods provide comprehensive screening of methane emissions from oil and gas (O & G) facilities in production basins. Emission detections ("plumes") from these studies are also frequently scaled to the basin level, but little is known regarding the uncertainties during scaling. This study analyzed an aircraft field study in the Denver-Julesburg basin to quantify how often plumes identified maintenance events, using a geospatial inventory of 12,629 O & G facilities. Study partners (7 midstream and production operators) provided the timing and location of 5910 maintenance events during the 6 week study period. Results indicated three substantial uncertainties with potential bias that were unaddressed in prior studies. First, plumes often detect maintenance events, which are large, short-duration, and poorly estimated by aircraft methods: 9.2 to 46% (38 to 52%) of plumes on production were likely known maintenance events. Second, plumes on midstream facilities were both infrequent and unpredictable, calling into question whether these estimates were representative of midstream emissions. Finally, 4 plumes attributed to O & G (19% of emissions detected by aircraft) were not aligned with any O & G location, indicating that the emissions had drifted downwind of some source. It is unclear how accurately aircraft methods estimate this type of plume; in this study, it had material impact on emission estimates. While aircraft surveys remain a powerful tool for identifying methane emissions on O & G facilities, this study indicates that additional data inputs, e.g., detailed GIS data, a more nuanced analysis of emission persistence and frequency, and improved sampling strategies are required to accurately scale plume estimates to basin emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Aeronaves , Metano/análisis , Gas Natural/análisis
7.
PLoS One ; 19(4): e0297784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603686

RESUMEN

Based on the integrated model of Super-SBM model, spatial Durbin model (SDM) and Grey neural network model, this paper analyzes the panel data of various provinces in China from multiple angles and dimensions. It was found that there were significant differences in eco-efficiency between organic rice production and conventional rice production. The response of organic rice to climate change, the spatial distribution of ecological and economic benefits and the impact on carbon emission were analyzed. The results showed that organic rice planting not only had higher economic benefits, but also showed a rising trend of ecological benefits and a positive feedback effect. This finding highlights the importance of organic rice farming in reducing carbon emissions. Organic rice farming effectively reduces greenhouse gas emissions, especially carbon dioxide and methane, by improving soil management and reducing the use of fertilizers and pesticides. This has important implications for mitigating climate change and promoting soil health and biodiversity. With the acceleration of urbanization, the increase of organic rice planting area shows the trend of organic rice gradually replacing traditional rice cultivation, further highlighting the potential of organic agriculture in emission reduction, environmental protection and sustainable agricultural production. To this end, it is recommended that the Government implement a diversified support strategy to encourage technological innovation, provide guidance and training, and raise public awareness and demand for organic products. At the same time, private sector participation is stimulated to support the development of organic rice cultivation through a public-private partnership model. Through these measures, further promote organic rice cultivation, achieve the dual goals of economic benefits and environmental benefits, and effectively promote the realization of double carbon emission reduction targets.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Agricultura/métodos , Suelo , Agricultura Orgánica , China , Metano/análisis , Fertilizantes
8.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501699

RESUMEN

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Asunto(s)
Secuestro de Carbono , Ecosistema , Dióxido de Carbono/análisis , Suecia , Suelo/química , Bosques , Metano/análisis
9.
Sci Total Environ ; 926: 172081, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554961

RESUMEN

Mature compost can promote the transformation of organic matter (OM) and reduce the emission of polluting gases during composting, which provides a viable approach to reduce the environmental impacts of biodegradable plastics (BPs). This study investigated the impact of mature compost on polybutylene adipate terephthalate (PBAT) degradation, greenhouse gas (GHG) emission, and microbial community structure during composting under two treatments with mature compost (MC) and without (CK). Under MC, visible plastic rupture was advanced from day 14 to day 10, and a more pronounced rupture was observed at the end of composting. Compared with CK, the degradation rate of PBAT in MC was increased by 4.44 % during 21 days of composting. Thermobifida, Ureibacillus, and Bacillus, as indicator species under MC treatment, played an important role in PBAT decomposition. Mature compost reduced the total global warming potential (GWP) by 25.91 % via inhibiting the activity of bacteria related to the production of CH4 and N2O. Functional Annotation of Prokaryotic Taxa (FAPROTAX) further revealed that mature compost addition increased relative abundance of bacteria related to multiple carbon (C) cycle functions such as methylotrophy, hydrocarbon degradation and cellulolysis, inhibited nitrite denitrification and denitrification, thus alleviating the emission of GHGs. Overall, mature compost, as an effective additive, exhibits great potential to simultaneously mitigate BP and GHG secondary pollution in co-composting of food waste and PBAT.


Asunto(s)
Plásticos Biodegradables , Compostaje , Gases de Efecto Invernadero , Eliminación de Residuos , Gases de Efecto Invernadero/análisis , 60659 , Alimentos , Suelo/química , Metano/análisis , Estiércol
10.
Sci Total Environ ; 926: 172108, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38556013

RESUMEN

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 µmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 µmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + â–³N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + â–³N2) caused by increased nitrogen loading.


Asunto(s)
Gases de Efecto Invernadero , Animales , Estanques , Dióxido de Carbono/análisis , Nitrógeno , Monitoreo del Ambiente , Acuicultura/métodos , Agua , Metano/análisis , Óxido Nitroso/análisis , Suelo
11.
Sci Total Environ ; 925: 171697, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492594

RESUMEN

Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 µg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 µg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Óxido Nitroso/análisis , Amoníaco , Suelo , Instalaciones de Eliminación de Residuos , Metano/análisis , Microbiología del Suelo
12.
Sci Total Environ ; 925: 171783, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503390

RESUMEN

Coastal ecosystems such as salt marshes, seagrass meadows, and kelp forests contribute to climate regulation as carbon sinks. However, coastal ecosystems may act as carbon sources as beach wrack accumulations may release greenhouse gases (GHG) during decomposition. The magnitude of GHG emissions of beach wrack accumulations under natural conditions are poorly understood, hampering accurate blue carbon accountings. In this study, we assessed the spatio-temporal variability and environmental factors driving CO2, CH4 and N2O emissions from beach wrack accumulations on a temperate sandy beach. Beach wrack accumulations, dominated by Zostera marina and opportunistic brown macroalgae, presented variable spatio-temporal dynamics. Annual beach wrack GHG emissions achieved up to 77,915 mg m-2 d-1 CO2e (CO2 equivalents) and varied largely throughout the study period due to interactive effects of temperature, wave exposure, beach wrack biomass moisture, abundance, and species composition. Our findings showed that methane emissions in new, freshly deposited, and in drifting wrack in the water reached up to 100 mg m-2 d-1, representing up to 57 % of annual CO2e emissions occurring throughout the year. Nitrous oxide emissions were highly variable and comprised a minor extent (i.e., up to 4 %) of annual CO2e emissions. Together, wrack CH4 and N2O emissions provided 13.69 g CO2 m-2 per year to the atmosphere. Our findings indicate that excessive opportunistic macroalgae biomass driven by eutrophication may explain increased CO2 and N2O emissions. We conclude that whilst beach wrack depositions are a natural and essential part of coastal ecosystems, they may provide an extra source of GHG to the atmosphere, potentially counteracting the role of vegetated coastal ecosystems as carbon sinks.


Asunto(s)
Gases de Efecto Invernadero , Ecosistema , Dióxido de Carbono/análisis , Bahías , Metano/análisis , Óxido Nitroso/análisis , Carbono
13.
Waste Manag ; 180: 47-54, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38507836

RESUMEN

Accurate quantification of methane emissions from landfills is crucial for improving greenhouse gas inventories and mitigating climate change impacts. Existing methodologies, such as theoretical gas production models and labour-intensive measurement approaches, present limitations including large uncertainties and high operational costs. This study adds to a growing body of research and applications which aim to bridge this gap. To this end, we present a case study using Unmanned Aerial Vehicles (UAVs) equipped with methane and wind instrumentation for a survey of a landfill site in Bury, Manchester, UK, in summer 2022, in order to evaluate and reflect the challenges of the UAV-based mass balance method for quantification of methane emissions from a large heterogeneous source such as landfill. This study offers guidance on defining an appropriate methane background concentration, geospatial interpolation of sampled date, survey sampling strategy, and more importantly, addresses the challenges surrounding UAV wind measurements and spatial characterisation of emission plumes. For the period of the case study, we quantified methane flux for the landfill site to be 150.7 kg h-1 with a 1 standard deviation uncertainty range of 83.0 kg h-1 to 209.5 kg h-1.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Contaminantes Atmosféricos/análisis , Metano/análisis , Eliminación de Residuos/métodos , Monitoreo del Ambiente/métodos , Instalaciones de Eliminación de Residuos , Reino Unido
14.
Bioresour Technol ; 399: 130575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479629

RESUMEN

Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Zeolitas , Gases de Efecto Invernadero/análisis , Zeolitas/química , Suelo/química , Metano/análisis , Carbón Orgánico , Nitrógeno/análisis , Óxido Nitroso/análisis
15.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471931

RESUMEN

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Asunto(s)
Carbón Orgánico , Gases de Efecto Invernadero , Oryza , Gases de Efecto Invernadero/análisis , Agricultura/métodos , Fertilizantes/análisis , Suelo , Nitrógeno , China , Metano/análisis , Óxido Nitroso/análisis , Fósforo , Verduras , Potasio
16.
Environ Pollut ; 346: 123672, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428796

RESUMEN

Dredging wastewater (DW) from aquaculture ponds is a major disturbance factor in mangrove management, and its effects on the greenhouse gas (GHG) fluxes from mangrove sediment remain controversial. In this study, we investigated GHG (N2O, CH4, and CO2) fluxes from mangrove sediment at typical aquaculture pond-mangrove sites that were stimulated by DW discharged for different input histories and from different farm types. The GHG fluxes exhibited differing cumulative effects with increasing periods of DW input. The N2O and CH4 fluxes from mangrove sediment that received DW inputs for 17 y increased by ∼10 and ∼1.5 times, respectively, whereas the CO2 flux from mangrove sediment that received DW inputs for 11 y increased by ∼1 time. The effect of DW from shrimp ponds on the N2O flux was significantly larger than those of DW from fish/crab ponds and razor clam ponds. Moreover, the total global warming potentials (GWPs) at the field sites with DW inputs increased by 29-129% of which the CO2 flux was the main contributor to the GWP (85-96%). N2O as a proportion of CO2-equivalent flux increased from 2% to 12%, indicating that N2O was an important contributor to the increase in GWP. Overall, DW increased the GHG fluxes from mangrove sediments, indicating that the contribution of mangroves to climate warming was enhanced under DW input. It also implies that the carbon sequestration potential of mangrove sediments may be threatened to some extent. Therefore, future assessments of the carbon sequestration capacity of mangroves at regional or global scales should consider this phenomenon.


Asunto(s)
Braquiuros , Gases de Efecto Invernadero , Animales , Estuarios , Aguas Residuales , Ríos , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Acuicultura , China , Metano/análisis , Óxido Nitroso/análisis , Humedales
17.
Environ Sci Technol ; 58(11): 4948-4956, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445593

RESUMEN

Methane emissions from the oil and gas supply chain can be intermittent, posing challenges for monitoring and mitigation efforts. This study examines shallow water facilities in the US Gulf of Mexico with repeat atmospheric observations to evaluate temporal variation in site-specific methane emissions. We combine new and previous observations to develop a longitudinal study, spanning from days to months to almost five years, evaluating the emissions behavior of sites over time. We also define and determine the chance of subsequent detection (CSD): the likelihood that an emitting site will be observed emitting again. The average emitting central hub in the Gulf has a 74% CSD at any time interval. Eight facilities contribute 50% of total emissions and are over 80% persistent with a 96% CSD above 100 kg/h and 46% persistent with a 42% CSD above 1000 kg/h, indicating that large emissions are persistent at certain sites. Forward-looking infrared (FLIR) footage shows many of these sites exhibiting cold venting. This suggests that for offshore, a low sampling frequency over large spatial coverage can capture typical site emissions behavior and identify targets for mitigation. We further demonstrate the preliminary use of space-based observations to monitor offshore emissions over time.


Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Golfo de México , Estudios Longitudinales , Contaminantes Atmosféricos/análisis , Probabilidad , Gas Natural
18.
J Environ Manage ; 355: 120453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430886

RESUMEN

Organophosphonates (OPs) are a unique group of natural and synthetic compounds, characterised by the presence of a stable, hard-to-cleave bond between the carbon and phosphorus atoms. OPs exhibit high resistance to abiotic degradation, excellent chelating properties and high biological activity. Despite the huge and increasing scale of OP production and use worldwide, little is known about their transportation and fate in the environment. Available data are dominated by information concerning the most recognised organophosphonate - the herbicide glyphosate - while other OPs have received little attention. In this paper, a comprehensive review of the current state of knowledge about natural and artificial OPs is presented (including glyphosate). Based on the available literature, a number of knowledge gaps have been identified that need to be filled in order to understand the environmental effects of these abundant compounds. Special attention has been given to GHG-related processes, with a particular focus on CH4. This stems from the recent discovery of OP-dependent CH4 production in aqueous environments under aerobic conditions. The process has changed the perception of the biogeochemical cycle of CH4, since it was previously thought that biological methane formation was only possible under anaerobic conditions. However, there is a lack of knowledge on whether OP-associated methane is also formed in soils. Moreover, it remains unclear whether anthropogenic OPs affect the CH4 cycle, a concern of significant importance in the context of the increasing rate of global warming. The literature examined in this review also calls for additional research into the date of OPs in waste and sewage and in their impact on environmental microbiomes.


Asunto(s)
Gases de Efecto Invernadero , Calentamiento Global , Suelo , Aguas del Alcantarillado , Metano/análisis , Dióxido de Carbono/análisis , Óxido Nitroso/análisis
19.
J Environ Manage ; 355: 120469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432010

RESUMEN

Crop byproducts can be supplemented in livestock feeds to improve the utilization of resources and reduce greenhouse gas (GHG) emissions. We explored the mitigation potential of GHG emissions by supplementing crop byproducts in feeds based on a typical intensive dairy farm in China. Results showed that GHG emissions associated with production of forage were significantly decreased by 25.60 % when no GHG emissions were allocated to crop byproducts, and enteric methane emission was significantly decreased by 13.46 % on the basis of CO2 eq, g/kg fat and protein corrected milk. The supplementation did not affect lactation performance, rumen microbiota and microbial enzymes at the gene level. Metabolomics analysis revealed changes in amino acid catabolism of rumen fluid, which were probably responsible for more propionate production. In conclusion, supplementing crop byproducts in feeds can be a potential strategy to reduce GHG emissions of livestock.


Asunto(s)
Gases de Efecto Invernadero , Animales , Femenino , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Ganado , Leche/química , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Metano/análisis , Efecto Invernadero
20.
J Environ Manage ; 355: 120481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447515

RESUMEN

Significant amounts of the greenhouse gas methane (CH4) are released into the atmosphere worldwide via freshwater sources. The surface methane maximum (SMM), where methane is supersaturated in surface water, has been observed in aquatic systems and contributes significantly to emissions. However, little is known about the temporal and spatial variability of SMM or the mechanisms underlying its development in artificial reservoirs. Here, the community composition of methanogens as major methane producers in the water column and the mcrA gene was investigated, and the cause of surface methane supersaturation was analyzed. In accordance with the findings, elevated methane concentration of SMM in the transition zone, with an annually methane emission flux 2.47 times higher than the reservoir average on a large and deep reservoir. In the transition zone, methanogens with mcrA gene abundances ranging from 0.5 × 103-1.45 × 104 copies/L were found. Methanobacterium, Methanoseata and Methanosarcina were the three dominate methanogens, using both acetic acid and H2/CO2 pathways. In summary, this study contributes to our comprehension of CH4 fluxes and their role in the atmospheric methane budget. Moreover, it offers biological proof of methane generation, which could aid in understanding the role of microbial methanogenesis in aerobic water.


Asunto(s)
Gases de Efecto Invernadero , Agua , Metano/análisis , Agua Dulce , Atmósfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...